An efficient parallel implementation of explicit multirate Runge-Kutta schemes for discontinuous Galerkin computations

نویسندگان

  • Bruno Seny
  • Jonathan Lambrechts
  • Thomas Toulorge
  • Vincent Legat
  • Jean-François Remacle
چکیده

Although explicit time integration schemes require small computational efforts per time step, their efficiency is severely restricted by their stability limits. Indeed, the multi-scale nature of some physical processes combined with highly unstructured meshes can lead some elements to impose a severely small stable time step for a global problem. Multirate methods offer a way to increase the global efficiency by gathering grid cells in appropriate groups under local stability conditions. These methods are well suited to the discontinuous Galerkin framework. The parallelization of the multirate strategy is challenging because grid cells have different workloads. The computational cost is different for each sub-time step depending on the elements involved and a classical partitioning strategy is not adequate any more. In this paper, we propose a solution that makes use of multi-constraint mesh partitioning. It tends to minimize the inter-processor communications, while ensuring that the workload is almost equally shared by every computer core at every stage of the algorithm. Particular attention is given to the simplicity of the parallel multirate algorithm while minimizing computational and communication overheads. Our implementation makes use of the MeTiS library for mesh partitioning and the Message Passing Interface for inter-processor communication. Performance analyses for two and three dimensional practical applications confirm that multirate methods preserve important computational advantages of explicit methods up to a significant number of processors. ∗Corresponding author Email address: [email protected] (B. Seny) Preprint submitted to Journal of Computational Physics September 10, 2013

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Matrix-free Implementation of Discontinuous Galerkin Methods for Compressible Flow Problems

We discuss the matrix-free implementation of Discontinuous Galerkin methods for compressible flow problems, i.e. the compressible Navier-Stokes equations. For the spatial discretization the CDG2 method and for temporal discretization an explicit Runge-Kutta method is used. For the presented matrix-free approach we discuss asynchronous communication, shared memory parallelization, and automated ...

متن کامل

Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes

Despite the popularity of high-order explicit Runge–Kutta (ERK) methods for integrating semi-discrete systems of equations, ERK methods suffer from severe stability-based time step restrictions for very stiff problems. We implement a discontinuous Galerkin finite element method (DGFEM) along with recently introduced high-order implicit–explicit Runge–Kutta (IMEX-RK) schemes to overcome geometry...

متن کامل

IMEX HDG-DG: a coupled implicit hybridized discontinuous Galerkin (HDG) and explicit discontinuous Galerkin (DG) approach for shallow water systems

We propose IMEX HDG-DG schemes for planar and spherical shallow water systems. Of interest is subcritical flow, where the speed of the gravity wave is faster than that of nonlinear advection. In order to simulate these flows efficiently, we split the governing system into a stiff part describing the gravity wave and a non-stiff part associated with nonlinear advection. The former is discretized...

متن کامل

Implicit solution of the unsteady Euler equations for high-order accurate discontinuous Galerkin discretizations

Efficient solution techniques for high-order accurate time-dependent problems are investigated for solving the two-dimensional non-linear Euler equations in this work. The spatial discretization consists of a high-order accurate Discontinuous Galerkin (DG) approach. Implicit time-integration techniques are considered exclusively in order to avoid the stability restrictions of explicit methods. ...

متن کامل

On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations

We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 256  شماره 

صفحات  -

تاریخ انتشار 2014